Nonlocal Problems for Fractional Differential Equations via Resolvent Operators
نویسندگان
چکیده
منابع مشابه
Nonlocal Problems for Fractional Differential Equations via Resolvent Operators
We discuss the continuity of analytic resolvent in the uniform operator topology and then obtain the compactness of Cauchy operator by means of the analytic resolvent method. Based on this result, we derive the existence of mild solutions for nonlocal fractional differential equations when the nonlocal item is assumed to be Lipschitz continuous and neither Lipschitz nor compact, respectively. A...
متن کاملApproximate controllability of fractional differential equations via resolvent operators
where D is the Caputo fractional derivative of order α with < α < , A :D(A)⊂ X → X is the infinitesimal generator of a resolvent Sα(t), t ≥ , B : U → X is a bounded linear operator, u ∈ L([,b],U), X and U are two real Hilbert spaces, J–α t h denotes the – α order fractional integral of h ∈ L([,b],X). The controllability problem has attracted a lot of mathematicians and engineers’ att...
متن کاملSpectral problems for fractional differential equations from nonlocal continuum mechanics
*Correspondence: [email protected] School of Mathematics and Statistics, Shandong University, Weihai, Shandong 264209, P.R. China Abstract This paper studies the spectral problem of a class of fractional differential equations from nonlocal continuummechanics. By applying the spectral theory of compact self-adjoint operators in Hilbert spaces, we show that the spectrum of this problem consists of ...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Legendre Wavelets for Solving Fractional Differential Equations
In this paper, we develop a framework to obtain approximate numerical solutions to ordinary differential equations (ODEs) involving fractional order derivatives using Legendre wavelets approximations. The continues Legendre wavelets constructed on [0, 1] are utilized as a basis in collocation method. Illustrative examples are included to demonstrate the validity and applicability of the techn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Differential Equations
سال: 2013
ISSN: 1687-9643,1687-9651
DOI: 10.1155/2013/490673